soq
解:(1)由题意得,c=2,a2/c=8得,a2=16,b2=12,
∴所求椭圆方程为x2/16+y2/12=1;
(2)设P点横坐标为x0,则PM/AP=[8-x0]/[x0+4]=12/[x0+4]-1,
∵-4<x0≤4,∴PM/AP=[8-x0]/[x0+4]=12/[x0+4]-1≥1/2.
∴PM/AP的取值范围是[1/2,+∞);(9分)
(3)由题意得,t=5,即圆心Q为(5,0),
设BQ=x,则
BS?BT=|BS|?|BT|cos∠SBT
=|BS|?|BT|(1-2sin^2∠SBQ)
=(x^2-1)[1-2(1/x)^2]
=x^2+2/x^2-3,
∵1<BQ≤9,即1<x≤9,∴1<x2≤81,
易得函数y=x2+2/x2在(1,根号 2)上单调递减,在(根号 2,81]上单调递增,
∴x2=81时,(BS?BT)max=6320/81.