如图,AB是⊙O的直径,AC是弦,点D是AC上一点,弦DE⊥AB交AC于F,交AB于H,交⊙O于E,P是ED延长线上一点

解答:解:(1)PC与⊙O相切.

证明:连OC,∵PC=PF,∴∠PCF=∠PFC=∠AFH,

又∵DE⊥AB,

AD
AE
,∠OAC+∠AFH=90°,

∴∠OCA+∠PCF=90°即∠OCP=90°,

∴PC为⊙O的切线.

(2)连OD交AC于M,∵

AD
AE

∴AC⊥OD,∴sin∠BAC=

OM
AO
=
1
3

设OM为x,则OD=OA=3x,

∴DM=2x,在Rt△AOM中AM=2

2
x,

∴AD=2

3
x,又
CD
=
AD
AE
,∠CAD=∠ADE,

∴sin∠ADE=sin∠CAD=

DM
AD
=
2x
2
3
x
=
3
3