10X单细胞空间联合分析揭示了受不同基质细胞群调节的follicle发育

follicle发育是一个复杂的动态过程。follicle被包裹在基质中,一旦follicle发育,follicle就会在不断生长的过程中从皮层移动到髓质,最后到达皮层排卵 。许多这些过程不能仅用毛囊来解释。 通过对小鼠出生后follicle发育关键时间点的单细胞和空间转录组测序,发现ovarian基质细胞不仅是构成 ovarian的主要细胞群之一,其细胞群和空间位置也与follicle发育密切相关 。通过对 细胞通讯的分析发现, ovarian基质细胞是细胞间通讯的主要传递者,它们发出的许多信号被颗粒细胞和卵母细胞接收,参与follicle发育 。 ovarian基质细胞不是同质细胞群。 将单细胞类型与其空间位置信息相结合,将 ovarian基质细胞分为四种类型,即结构性基质细胞、滤泡周基质细胞、基质祖细胞和类固醇基质细胞,每种类型在follicle发育中发挥不同的功能 。对不同空间位置和不同类型基质细胞的深入研究将扩大对follicle发育动态的理解,为 ovarian相关疾病的治疗带来新的靶点和新方法。

ovarian由两部分组成: 实质和间质 follicle是 ovarian的功能单位,包括 ovarian实质,决定了女性的生殖寿命 。它由卵母细胞和嵌入 ovarian基质中的体细胞层(颗粒细胞和膜细胞)组成。 ovarian的大部分,包括皮质和髓质,由具有不同特征的基质组成。大多数follicle嵌入 ovarian皮质的基质中,并在 ovarian髓质的基质中成熟。历史上, ovarian生物学的研究主要集中在受卵母细胞和颗粒细胞(GCs)控制的follicle发生上,而follicle发生中存在许多未解决的问题,仅靠这两种细胞类型无法解释。除了构成follicle的细胞外,嵌入follicle的 ovarian基质对follicle发生有很大贡献,但没有得到足够的重视,因为它是理解follicle发生复杂过程的关键。

ovarian基质由一般成分组成,例如免疫细胞、血管、神经、细胞外基质和未完全表征的基质细胞的混合群体 。大部分 ovarian基质包含未完全表征的基质细胞,包括成纤维细胞样、梭形细胞形和间质细胞。 ovarian基质细胞在follicle发生中具有重要作用,特别是在原始follicle的激活和膜细胞的分化中 。次级follicle可以使用体外培养系统单独生长,而原始和初级follicle必须在含有基质成分的器官培养物中激活。此外,所有在体外培养后成功生产人中期 II (MII) 卵子的研究都使用机械方法而不是酶消化来从 ovarian组织中分离follicle,因为酶消化会对follicle造成损害,同时还能保持残留基质细胞的紧密结合,这些细胞与follicle进行密集的细胞间通讯,并可能具有分化成其他关键细胞类型的能力,例如膜细胞。此外,基质细胞***培养可以改善早期follicle的生长和存活,这对于将体外培养系统成功转化为灵长类动物和人类follicle至关重要。 ovarian基质细胞不仅为follicle发育提供结构支持,而且与follicle具有复杂的双向旁分泌信号。几种生长因子是follicle发生的关键调节分子,包括成纤维细胞生长因子、转化生长因子 β、血小板衍生生长因子、肝细胞生长因子和胰岛素样生长因子。然而, follicle和基质细胞之间的特定细胞 - 细胞分泌信号仍不清楚

尽管有这些新见解,但对 ovarian基质细胞的理解仍然有限,许多问题仍未得到解答。 ovarian基质细胞的不完整表征和分类导致研究中的混淆,这些研究报告了有关基质细胞的发现而没有进一步鉴定。 ovarian基质细胞不是指单个同质细胞群。最近的单细胞 RNA 测序 (scRNA-seq) 研究证实了多个基质细胞clusters的存在,但缺乏对整个 ovarian基质细胞类型的全面和完整的表征。基质细胞的分布和亚型可能会因其在 ovarian中的位置而异(例如,皮质与髓质)。 随着follicle的生长和排卵以及黄体的发育,基质细胞的分布也可能发生变化,伴随着周期性的结构变化。整个生殖寿命的变化也很明显,包括纤维化胶原蛋白的增加,如老年小鼠、女性和灵长类动物的 ovarian所示。对于这些不完全表征的基质细胞类型,仔细的本体论、进一步的标记识别以及对区域细微差别的关注是关键的下一步

在这项研究中, 生成了小鼠出生后 ovarian follicle发育的单细胞图谱和时空基因表达动态,阐明了 ovarian基质细胞在follicle发育中的重要作用。 细胞间通讯分析描绘了follicle发育不同阶段的细胞类型组之间复杂的细胞间通讯关系,并揭示 ovarian基质细胞是 ovarian中调节follicle发育的主要外向信号细胞类型 。 将 ovarian基质细胞完全表征为四个亚群,即结构基质细胞、滤泡周基质细胞、基质祖细胞和类固醇基质细胞,并进一步进行标记鉴定。 这些基质细胞亚群中的每一个在follicle发育中发挥不同的作用。

为了生成小鼠 ovarian的细胞图,说明follicle发育过程中的时间和空间变化, 通过单细胞 RNA 测序 (scRNA-seq) 和空间转录组学方法(10× Genomics Visium 载玻片和高分辨率显微镜) 。 五个时间点的 ovarian被整合到scRNA-seq 分析中:出生后第 3 天、第 5 天、第 7 天、3 周和 8 周。 三个时间点的 ovarian被整合到 10× Visium 分析中:出生后第 7 天、第 3 周和第 8 周。 后一种方法允许探索follicle发育中的细胞特征,以获得详细的细胞群和时间变化

能够生成 58,319 个细胞的 ovarian图谱,并根据其标记的表达识别出 21 个被分配细胞身份的clusters。 为了进一步识别clusters,根据已知的细胞类型标记基因分配clusters。 细胞特异性标记基因是卵母细胞(Sycp3)、颗粒细胞(Amhr2)、基质细胞(Col1a1)、内皮细胞(Cdh5)、上皮细胞(Krt19)、免疫细胞(Ptprc)、平滑肌细胞(Des)和 类固醇生成细胞 (Ptgfr)。 这些clusters可分为九个主要细胞类别:(i)基质细胞,(ii)颗粒细胞,(iii)卵母细胞,(iv)内皮细胞,(v)上皮细胞,(vi)免疫细胞,(vii)平滑细胞 肌肉细胞,(viii)类固醇生成细胞,和(ix)未定义的体细胞。 为了进一步获得基因特征的动态模式,鉴定了九个主要的细胞类别clusters特异性标记基因。 在这些细胞类型中,基质细胞和GCs占了绝大多数。

为了系统地绘制由 scRNA-seq 识别的细胞类型在 ovarian内的位置,使用了 10× Visium Spatial Transcriptomics 技术 。在第 7 天、第 3 周和第 8 周检查了三个 ovarian样本,它们代表了三个重要的 ovarian发育阶段。总体而言,使用统一流形近似(UMAP)和投影对九个转录不同的clusters进行分类和可视化。可以清楚地看到九个clusters的位置,伴随着follicle和黄体。然后, 将时空数据与 scRNA-seq 数据相结合,使用 SPOTlight 推断复杂 ovarian组织内细胞类型和状态的位置(关于SPOTlight,大家可以参考文章 10X空间转录组数据分析梳理 、 10X单细胞空间联合分析方法汇总及算法总结 、 10X单细胞空间分析回顾之SPOTlight ) 。如下所示, 将八个明确识别的细胞类别映射到 10×Visium 时空 ovarian组织中,发现基质细胞、内皮细胞和 GC 是卵母细胞周围的三个细胞类别 。可以看到 ovarian细胞类型的所有空间位置。

颗粒细胞(GCs)是follicle中不可或缺的一部分,直接与卵母细胞相互作用 。为了通过UMAP分析在调查期间剖析GC在发育过程中的异质性,将GC群体确定为11个clusters。为了获得基因特征的动态模式,鉴定了GC clusters特异性标记基因。 根据这些分析,绘制了一个遗传动态模型,包括在follicle发育过程中的低分化、mural、卵丘、类固醇生成和增殖性 GC 。已知在早期发育阶段 GC 中表达的基因是 Wt1 和 Foxl2;对于mural GC,Cyp19a1;对于卵丘细胞,Slc38a3 和 Amh;对于类固醇生成的 GC,Cyp11a1 和 Lhcgr。标记基因 Wt1、Slc38a3、Cyp19a1 和 Cyp11a1 在 10× Visium 切片中可视化,与真实的组织学位置相匹配。 低分化GCs的比例随着时间的推移而降低,而卵丘GCs、mural GCs和类固醇GCs的比例随着时间的推移而增加,并在3周或8周达到峰值 。结果与 ovarian和follicle发育过程中的 GC 动力学相匹配。然而,没有发现任何明显的边界来将原始follicle到窦follicle的 GC 分组。

为了剖析整个调查期间 GC 的命运决定,根据上面报道的基因表达,它们沿着伪时间轨迹排列 。获得了三个状态(在伪时间分析中使用的术语,其中“state”被分配来标记 Monocle 中轨迹树的片段)。此外,代表基因(上面确定的 3 个follicle形成阶段的标记基因)的表达以及伪时间轨迹与我们的推断一致。根状态包含大部分差异较小的 GC;状态 1 包含大部分积云 GC、mural GC 和增殖 GC;状态 3 包含大多数类固醇生成 GC。在这样的伪时间轨迹中,3 个分支暗示了具有细胞标记的 GC 的 3 个分化阶段,例如 Wnt6、Wt1、Hmgb2 和 Cyp11a1。对这三个州的代表性基因的 GO 分析显示了相关的途径。此外,分析了两种主要细胞群(基质细胞和 GC)与其他细胞类型之间的细胞串扰。如下图所示, 除了 GC 和其他细胞类型之间广泛的细胞间通讯外,基质细胞和其他 ovarian细胞类型之间的细胞间通讯也更强

为了分析这些细胞类型在小鼠 ovarian中的通讯,进一步进行了 CellChat 分析(关于CellChat,大家可以参考文章 10X单细胞(10X空间转录组)通讯分析之CellChat 、 10X单细胞(10X空间转录组)通讯分析CellChat之多样本通讯差异分析 ),以确定follicle发育过程中这些细胞类型之间的细胞通讯 。第 3 天、第 5 天、第 7 天、第 3 周和第 8 周的推断交互次数分别为 723、455、522、329 和 602,第 3 天的交互强度,第 5 天、第 7 天、第 3 周和第 8 周分别为 22.525、6.705、10.16、3.534 和 4.065。 发现第 3 天、第 7 天和第 8 周是细胞通讯的最强时间点 。因此,更多地关注第 3 天、第 7 天和第 8 周。 ovarian中的九种细胞类型之间存在非常复杂的细胞通讯,而基质细胞是信号最强的细胞类型 。进一步的信号传导作用分析表明,在六个重要的 ovarian发育时期, 基质细胞在细胞间通讯中表现出最强的外向相互作用 。 GCs 是在第 3、5 和 7 天接收最多传入受体信号的细胞类型,而上皮细胞是在 3 周和 8 周接收最多传入受体信号的类型。此外,在选定的时间过程中探索了特定类型的细胞通信。 发现基质细胞经常与所有其他细胞交流 。特别是,PTN、MK、ncWNT、PROS、GAS、ANGPTL 和 TWEAK 信号通路积极参与基质细胞的输出信号模式。在传出信号中,MK 在整个follicle发育阶段表达。 PTN 仅在第 3 天、第 5 天和第 7 天检测到,此时原始follicle激活和follicle发育为初级和次级follicle。比较了第 3 天和第 5 天,当原始follicle被激活时,发现 ncWnt、PROS、APELIN、GRN、CALCR、ACTIVIN、IFN-1 和 LIFR 在第 2 天特异性表达,而 IL -1 和 ANNEXIN 在第 5 天特异性表达。其他信号通路,如 TWEAK、PTN 和 MK,在第 5 天的表达水平高于第 5 天。当比较第 7 天和第 5 天的相对信息流时,发现IL-1、ANNEXIN、CCL、BMP、FGF 和 ENHO 在第 5 天特异性表达,而 TWEAK、APELIN、ANGPT、CALCR、CXCL、AMH、PERIOSTIN、PROS、EDN 和 MIF 在第 7 天特异性表达。其他信号通路,如 PTN 和 MK,在第 7 天的表达水平高于第 5 天。还将第 7 天的信号传导与第 3 周的信号传导进行比较,发现 PTN、TWEAK、EDN、MIF、TNF、WNT 、PERIOSTEIN、CXCL、CALCR、APELIN、IL-2和CSF在第7天特异性表达,而NPR2和HH在第3周特异性表达。 这些细胞信号通路在特定follicle发育阶段发生变化,表明分泌信号可能有助于follicle发育阶段 。由基质细胞分泌的 MK 等分泌因子随着follicle激活持续存在,直至follicle完全生长,这可能代表了基质细胞发送的支持follicle发育的重要信息。分析绘制了follicle发育中的关键信号通路。因此, follicle发育过程中这些细胞群之间的细胞通讯提供了更多关于follicle发育调控网络的信息

此外,分析了 ovarian基质细胞的 genetic dynamics 。当基质细胞的转录组与发育阶段一起绘制时,鉴定出 11 个细胞clusters。如前所述,鉴定了每个clusters内的新标记基因,其表达根据发育阶段而变化。 CytoTRACE 分析表明clusters 6、7 和 8 可能是基质细胞的root(关于CytoTrace,大家可以参考文章 10X单细胞轨迹分析(拟时分析)之cytotrace ) 。对已识别clusters的特殊细胞标志物的特征图分析表明,Tcf21 在整个 ovarian基质中的表达最高,Lum 表达主要在cluster 0、1、2、4、5 和 10 中。 Star 和 Cyp17a1 主要在cluster 1 和 9 中表达,Enpep 主要在cluster 3、7 和 8 中表达,干细胞标记物 Aldh1a2 主要在cluster 6 中表达。基因 Lum、Cyp17a1、Enpep和 Aldh1a2 在 10× Visium 切片中可视化,并使用原位杂交 (ISH)、免疫组织化学 (IHC) 或免疫荧光 (IF) 进行验证。 follicle周围基质细胞中的 Lum 表达支持follicle的生长 。 Cyp17a1不仅位于follicle周围的膜细胞中,而且还位于膜外的一些基质细胞中。此外,Enpep 表达与follicle发育有关,并通过 ISH 得到证实。 Aldh1a2主要在 ovarian上皮和 ovarian皮质基质中表达。结果表明, ovarian基质细胞不是指单一的同质细胞群,可以借助 scRNA-seq 和空间转录组学方法进行明确分类

为了剖析整个研究期间基质细胞的命运决定,根据基因表达沿伪时间轨迹对它们进行排序 。可以看到第3天、第5天和第7天的大部分细胞处于root状态,而基质细胞在第7天开始分化。这一发现表明第7天是基质细胞分化的时间点。细胞伪时间轨迹显示 5 个基质细胞状态和 2 个分支点。clusters 6 和 10 处于根状态的起点。结合 CytoTRACE 的结果和特定的细胞标志物进行综合分析,发现cluster 6 可能是基质细胞的祖细胞。该cluster的特征在于与生物过程相关的基因的表达,例如“PI3K-Akt 信号通路”、“粘着斑”和“内质网中的蛋白质加工”,这些基因在状态 1 细胞,表明基质细胞具有幼稚的典型功能。编码“脂质和动脉粥样硬化”、“MAPK 信号通路”和“FoxO 信号通路”成员的基因属于状态 3,证实了基质细胞中存在类固醇激素产生。状态 5 由编码参与“亨廷顿病”、“肌萎缩侧索硬化”和“氧化磷酸化”的蛋白质的基因组成,这表明这些基质细胞处于高功能状态。基因Ptn和Gstm6主要表达在状态1,Enpep主要表达在状态5,Star主要表达在状态 3。此外, 鉴定出4个具有不同模式的基因组,4个基因组的特异代表基因,即 Sfrp1、Fhl2、Tmem100 和 Cebpb

为了进一步验证 ovarian基质细胞分类,在 E11.5 和 8 周之间的 11 个时间点对follicle和小鼠 ovarian周围的人 ovarian组织进行了分析 。分析中包括具有直径为 2 mm 和 5 mm 的follicle的人类 ovarian组织。根据已知的细胞标志物, ovarian细胞可分为5个细胞亚群,基质细胞可分为6个clusters。ENPEP+ 滤泡周围基质细胞和 CYP17A1+ 类固醇生成基质细胞包围了人类follicle。然后, 在 E11.5 和 1 天之间的六个时间点将数据与 ovarian整合,并确定了 11 种 ovarian细胞类型。在这些细胞类型中,基质细胞和 GC 也占人口的绝大多数。基质细胞分为 10 个cluster,大多数 Aldh1a2+ 基质祖细胞在 E11.5 和伪时间轨迹的根部出现

为了更深入地了解上述四组细胞的功能, 使用 SCENIC 进一步研究了基质细胞特异性 TF 的调节子(转录因子(TF))活性 。在follicle发育过程中确定了几个重要的 TF。基于具有默认过滤参数的 5,481 个过滤基因的 51 个调节子活性,调节子活性与发育阶段相匹配,并列出了具有代表性的调节子。如图所示,一系列 TF 显示出更加动态的模式。例如,Maf、Wt1、Gata6 和 Erg1 主要在早期发育阶段活跃。随着follicle发育的继续,Foxo1、Runx1、Stat1 和 Smarca4 似乎主要在follicle成熟的 3 周和 8 周阶段被激活。由于基质细胞在第 7 天开始在细胞伪时间轨迹中分化成不同的命运,专注于这个时间点。 Yy1、Jdp2、Cebpb 和 Maff 主要在第 7 天活跃。Bclaf1 的调节子活性在第 7 天特别关闭。 这些调节子活性模式可能为 ovarian基质细胞命运的确定提供新的见解

此外,当将调节子活性与 ovarian基质细胞亚群联系起来时,发现一些 TF 显著代表特定的 ovarian基质细胞亚群 。 Gata6 和 Wt1 主要在没有滤泡周围基质细胞的基质细胞亚群中活跃。 E2f1 和 Ezh2 主要在滤泡周基质细胞中活跃。 Maff 和 Irf1 等 TF 主要在类固醇基质细胞中活跃。 Irx3、Runx1 和 Smad3 主要在基质祖细胞亚群中活跃。

由于 MK 信号在整个follicle发育阶段表达,将 midkine 添加到与包裹在藻酸盐中的follicle***培养中,以进一步证实外向 ovarian基质细胞信号在follicle发育中的作用。 ovarian基质细胞是外向 MK 信号的主要来源,并且GC是主要目标。受体-配体分析表明,Ncl、Sdc4、(Itga6+ Itgb1) 和 Lrp1 是 MK 信号传导的主要贡献者。从第 3 天、第 5 天、第 7 天、第 3 周和第 8 周对小鼠 ovarian进行了 Mdk ISH 分析。Mdk 主要位于 ovarian基质中,在第 5 天小鼠 ovarian中表达最高。随着follicle的发育,Mdk表达主要发生在生长follicle周围的基质中,而在窦状follicle或黄体周围减少,表明它可能在follicle发育和成熟中起重要作用。然后研究了 Mdk 配体的表达和定位。 ISH和IHC均显示Ncl和Lrp1主要在生长follicle的GCs中表达。接下来,将纯化的 MK 添加到培养基中,以在体外与早期次级follicle***培养。结果表明,midkine 显著促进了follicle生长的增加。这些结果证实了 ovarian基质细胞与follicle的串扰作用促进了follicle的发育。

为了研究基质细胞亚群在follicle发育中的作用,使用 ENPEP-PE 抗体通过流式细胞仪分选获得了follicle周围基质细胞。 ENPEP+ 滤泡周围基质细胞比 ENPEP- 细胞更像成纤维细胞。免疫荧光分析显示 ENPEP+ 滤泡周围基质细胞表达 ENPEP 和 COL1A1 但不表达 FOXL2。 ENPEP-细胞不表达 ENPEP 或 COL1A1 并且具有高水平的 FOXL2 表达。 qPCR 分析显示 ENPEP+ 滤泡周围基质细胞具有较高水平的 Pdgfa、Enpep 和 Mdk,而较低水平的 Amhr2 和 Foxl2。在细胞培养过程中,ENPEP+ 滤泡周围基质细胞在传代到第三代 (P3) 时不能增殖,这表明 ENPEP+ 滤泡周围基质细胞可以在体外分化。膜细胞标志物 Star 和 Cyp17a1 的免疫荧光和 qPCR 分析证实,ENPEP+ 滤泡周围基质细胞在长期体外培养中分化为膜样细胞。结果揭示了 ovarian基质细胞类型分类的重要性。这些结果表明, 滤泡周基质细胞不仅具有旁分泌作用,而且还具有分化功能

生活很好,有你更好