向量积坐标表示公式

向量积|c|=|a×b|=|a||b|sin<a,b>

即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。

一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从以不超过180度的转角转向时,竖起的大拇指指向是的方向。由于向量的叉积由坐标系确定,所以其结果被称为伪向量。

扩展资料

代数规则:

1、反交换律:a×b=-b×a

2、加法的分配律:a×(b+c)=a×b+a×c。

3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。

4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。

5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。

6、两个非零向量a和b平行,当且仅当a×b=0。

百度百科-向量积