设A为正规矩阵,如何证明A存在谱分解式:
定理4.2.1么.
设A=∑λiGi 和A=∑λiPi
→ AGi=λiGi ,APj=λjPj ,i=!j
→ APjGi=λiPjGi,AGiPj=λjGiPj
→ λiPjGi=λjPjGi ,i=!j
→PjGi=0
→Gi=InGi=(∑Pi)Gi=PiGi,Pi=PiIn=Pi(∑Gi)=PiGi
→Pi=Gi
定理4.2.1么.
设A=∑λiGi 和A=∑λiPi
→ AGi=λiGi ,APj=λjPj ,i=!j
→ APjGi=λiPjGi,AGiPj=λjGiPj
→ λiPjGi=λjPjGi ,i=!j
→PjGi=0
→Gi=InGi=(∑Pi)Gi=PiGi,Pi=PiIn=Pi(∑Gi)=PiGi
→Pi=Gi